Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Eur J Neurosci ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576168

ABSTRACT

Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.

2.
Bioresour Technol ; 394: 130299, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185446

ABSTRACT

Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.


Subject(s)
Fusarium , Gibberellins , Fermentation , Fusarium/genetics , Fusarium/chemistry , Bioreactors , Lipids
3.
Crit Rev Biotechnol ; 44(3): 337-351, 2024 May.
Article in English | MEDLINE | ID: mdl-36779332

ABSTRACT

ß-Carotene is one kind of the most important carotenoids. The major functions of ß-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize ß-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for ß-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve ß-carotene production.


Subject(s)
Metabolic Engineering , Yarrowia , beta Carotene/genetics , beta Carotene/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Saccharomyces cerevisiae/genetics , Promoter Regions, Genetic
4.
Biotechnol Lett ; 46(1): 37-46, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064043

ABSTRACT

Metabolic Engineering of yeast is a critical approach to improving the production capacity of cell factories. To obtain genetically stable recombinant strains, the exogenous DNA is preferred to be integrated into the genome. Previously, we developed a Golden Gate toolkit YALIcloneNHEJ, which could be used as an efficient modular cloning toolkit for the random integration of multigene pathways through the innate non-homologous end-joining repair mechanisms of Yarrowia lipolytica. We expanded the toolkit by designing additional building blocks of homologous arms and using CRISPR technology. The reconstructed toolkit was thus entitled YALIcloneHR and designed for gene-specific knockout and integration. To verify the effectiveness of the system, the gene PEX10 was selected as the target for the knockout. This system was subsequently applied for the arachidonic acid production, and the reconstructed strain can accumulate 4.8% of arachidonic acid. The toolkit will expand gene editing technology in Y. lipolytica, which would help produce other chemicals derived from acetyl-CoA in the future.


Subject(s)
CRISPR-Cas Systems , Yarrowia , CRISPR-Cas Systems/genetics , Yarrowia/genetics , Yarrowia/metabolism , Arachidonic Acid/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Metabolic Engineering
5.
J Agric Food Chem ; 71(48): 18890-18897, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37931026

ABSTRACT

Liquid fermentation is the primary method for GA3 production usingFusarium fujikuroi. However, production capacity is limited due to unknown metabolic pathways. To address this, we constructed a genome-scale metabolic model (iCY1235) with 1753 reactions, 1979 metabolites, and 1235 genes to understand the GA3 regulation mechanisms. The model was validated by analyzing growth rates under different glucose uptake rates and identifying essential genes. We used the model to optimize fermentation conditions, including carbon sources and dissolved oxygen. Through the OptForce algorithm, we identified 20 reactions as targets. Overexpressing FFUJ_02053 and FFUJ_14337 resulted in a 37.5 and 75% increase in GA3 titers, respectively. These targets enhance carbon flux toward GA3 production. Our model holds promise for guiding the metabolic engineering of F. fujikuroi to achieve targeted overproduction. In summary, our study utilizes the iCY1235 model to understand GA3 regulation, optimize fermentation conditions, and identify specific targets for enhancing GA3 production through metabolic engineering.


Subject(s)
Fusarium , Gibberellins , Gibberellins/metabolism , Fermentation , Metabolic Networks and Pathways
7.
ACS Synth Biol ; 11(10): 3163-3173, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36221956

ABSTRACT

Arachidonic acid is an essential ω-6 polyunsaturated fatty acid, which plays a significant role in cardiovascular health and neurological development, leading to its wide use in the food and pharmaceutical industries. Traditionally, ARA is obtained from deep-sea fish oil. However, this source is limited by season and is depleting the already threatened global fish stocks. With the rapid development of synthetic biology in recent years, oleaginous fungi have gradually attracted increasing attention as promising microbial sources for large-scale ARA production. Numerous advanced technologies including metabolic engineering, dynamic regulation of fermentation conditions, and multiomics analysis were successfully adapted to increase ARA synthesis. This review summarizes recent advances in the bioengineering of oleaginous fungi for ARA production. Finally, perspectives for future engineering approaches are proposed to further improve the titer yield and productivity of ARA.


Subject(s)
Biotechnology , Fungi , Arachidonic Acid/metabolism , Fungi/genetics , Fungi/metabolism , Metabolic Engineering , Fish Oils/metabolism
8.
Biotechnol Bioeng ; 119(10): 2819-2830, 2022 10.
Article in English | MEDLINE | ID: mdl-35798689

ABSTRACT

The sesquiterpene α-humulene is an important plant natural product, which has been used in the pharmaceutical industry due to its anti-inflammatory and anticancer activities. Although phytoextraction and chemical synthesis have previously been applied in α-humulene production, the low efficiency and high costs limit the development. In this study, Yarrowia lipolytica was engineered as the robust cell factory for sustainable α-humulene production. First, a chassis with high α-humulene output in the cytoplasm was constructed by integrating α-humulene synthases with high catalytic activity, optimizing the flux of mevalonate and acetyl-CoA pathways. Subsequently, the strategy of dual cytoplasmic-peroxisomal engineering was adopted in Y. lipolytica; the best strain GQ3006 generated by introducing 31 copies of 12 different genes could produce 2280.3± 38.2 mg/l (98.7 ± 4.2 mg/g dry cell weight) α-humulene, a 100-fold improvement relative to the baseline strain. To further improve the titer, a novel strategy for downregulation of squalene biosynthesis based on Cu2+ -repressible promoters was firstly established, which significantly improved the α-humulene titer by 54.2% to 3516.6 ± 34.3 mg/l. Finally, the engineered strain could produce 21.7 g/l α-humulene in a 5-L bioreactor, 6.8-fold higher than the highest α-humulene titer reported before this study. Overall, system metabolic engineering strategies used in this study provide a valuable reference for the highly sustainable production of terpenoids in Y. lipolytica.


Subject(s)
Sesquiterpenes , Yarrowia , Cytosol/metabolism , Metabolic Engineering , Monocyclic Sesquiterpenes , Sesquiterpenes/metabolism , Yarrowia/genetics , Yarrowia/metabolism
9.
J Mol Cell Biol ; 14(1)2022 02 24.
Article in English | MEDLINE | ID: mdl-34893854

ABSTRACT

Spinal cord impairment involving motor neuron degeneration and demyelination can cause lifelong disabilities, but effective clinical interventions for restoring neurological functions have yet to be developed. In early spinal cord development, neural progenitors of the motor neuron (pMN) domain, defined by the expression of oligodendrocyte transcription factor 2 (OLIG2), in the ventral spinal cord first generate motor neurons and then switch the fate to produce myelin-forming oligodendrocytes. Given their differentiation potential, pMN progenitors could be a valuable cell source for cell therapy in relevant neurological conditions such as spinal cord injury. However, fast generation and expansion of pMN progenitors in vitro while conserving their differentiation potential has so far been technically challenging. In this study, based on chemical screening, we have developed a new recipe for efficient induction of pMN progenitors from human embryonic stem cells. More importantly, these OLIG2+ pMN progenitors can be stably maintained for multiple passages without losing their ability to produce spinal motor neurons and oligodendrocytes rapidly. Our results suggest that these self-renewing pMN progenitors could potentially be useful as a renewable source of cell transplants for spinal cord injury and demyelinating disorders.


Subject(s)
Cell Self Renewal , Human Embryonic Stem Cells , Spinal Cord Injuries , Cell Differentiation/physiology , Humans , Motor Neurons/metabolism , Oligodendroglia , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy
10.
Bioresour Bioprocess ; 9(1): 106, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-38647889

ABSTRACT

Gibberellic acid (GA3) is a plant growth hormone that plays an important role in the production of crops, fruits, and vegetables with a wide market share. Due to intrinsic advantages, liquid fermentation of Fusarium fujikuroi has become the sole method for industrial GA3 production, but the broader application of GA3 is hindered by low titer. In this study, we combined atmospheric and room-temperature plasma (ARTP) with ketoconazole-based screening to obtain the mutant strain 3-6-1 with high yield of GA3. Subsequently, the medium composition and fermentation parameters were systematically optimized to increase the titer of GA3, resulting in a 2.5-fold increase compared with the titer obtained under the initial conditions. Finally, considering that the strain is prone to substrate inhibition and glucose repression, a new strategy of fed-batch fermentation was adopted to increase the titer of GA3 to 575.13 mg/L, which was 13.86% higher than the control. The strategy of random mutagenesis combined with selection and fermentation optimization developed in this study provides a basis for subsequent research on the industrial production of GA3.

11.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681875

ABSTRACT

Compensatory hepatocyte proliferation and other liver regenerative processes are activated to sustain normal physiological function after liver injury. A major mitogen for liver regeneration is hepatocyte growth factor (HGF), and a previous study indicated that progranulin could modulate c-met, the receptor for HGF, to initiate hepatic outgrowth from hepatoblasts during embryonic development. However, a role for progranulin in compensatory hepatocyte proliferation has not been shown previously. Therefore, this study was undertaken to clarify whether progranulin plays a regulatory role during liver regeneration. To this end, we established a partial hepatectomy regeneration model in adult zebrafish that express a liver-specific fluorescent reporter. Using this model, we found that loss of progranulin A (GrnA) function by intraperitoneal-injection of a Vivo-Morpholino impaired and delayed liver regeneration after partial hepatectomy. Furthermore, transcriptome analysis and confirmatory quantitative real-time PCR suggested that cell cycle progression and cell proliferation was not as active in the morphants as controls, which may have been the result of comparative downregulation of the HGF/c-met axis by 36 h after partial hepatectomy. Finally, liver-specific overexpression of GrnA in transgenic zebrafish caused more abundant cell proliferation after partial hepatectomy compared to wild types. Thus, we conclude that GrnA positively regulates HGF/c-met signaling to promote hepatocyte proliferation during liver regeneration.


Subject(s)
Hepatectomy/methods , Hepatocyte Growth Factor/metabolism , Hepatocytes/cytology , Liver Regeneration , Progranulins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Proliferation , Hepatocyte Growth Factor/genetics , Hepatocytes/metabolism , Organogenesis , Progranulins/genetics , Proto-Oncogene Proteins c-met/genetics , Signal Transduction , Zebrafish , Zebrafish Proteins/genetics
12.
J Biochem Mol Toxicol ; 35(8): e22826, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34060177

ABSTRACT

Hyperglycemia is considered a risk factor for the enhancement of local anesthetic-induced neurotoxicity. Transient receptor potential melastatin 7 (TRPM7), a kinase-coupled cation channel, has been implicated in a variety of neuropathological processes, including intracellular calcium disturbance and high glucose-induced neuropathy. In this study, we investigated whether TRPM7-related pathophysiology is involved in bupivacaine-induced neurotoxicity in SH-SY5Y cells and how hyperglycemia acts as a risk factor. For initial neurotoxicity evaluation, it was confirmed that cell damage and apoptosis induced by acute exposure to bupivacaine were dependent on its concentration and glucose preconditioning. High glucose preconditioning facilitated the bupivacaine-induced fast and temporary rise in intracellular free calcium concentration ([Ca2+ ]i ), which was attributed to both calcium influx through TRPM7 and calcium store release. Additionally, bupivacaine was shown to increase TRPM7-like currents, particularly in cells preconditioned with high glucose. Bupivacaine-induced neurotoxicity in hyperglycemia was correlated with extracellular signal-regulated kinase (ERK), but not protein kinase B (AKT) activation. Inhibition of TRPM7 and ERK activity alleviates bupivacaine neurotoxicity. These results suggest that therapeutically targeting TRPM7-related pathophysiological changes could be a potential strategy for treating local anesthetic-induced neurotoxicity exacerbated by hyperglycemia.


Subject(s)
Bupivacaine/adverse effects , Calcium Signaling/drug effects , Calcium/metabolism , Glucose/pharmacology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , TRPM Cation Channels/metabolism , Bupivacaine/pharmacology , Cell Line, Tumor , Humans
13.
Front Bioeng Biotechnol ; 9: 816980, 2021.
Article in English | MEDLINE | ID: mdl-35308823

ABSTRACT

Non-homologous end-joining (NHEJ)-mediated random integration in Yarrowia lipolytica has been demonstrated to be an effective strategy for screening hyperproducer strains. However, there was no multigene assembly method applied for NHEJ integration, which made it challenging to construct and integrate metabolic pathways. In this study, a Golden Gate modular cloning system (YALIcloneNHEJ) was established to develop a robust DNA assembly platform in Y. lipolytica. By optimizing key factors, including the amounts of ligase and the reaction cycles, the assembly efficiency of 4, 7, and 10 fragments reached up to 90, 75, and 50%, respectively. This YALIcloneNHEJ system was subsequently applied for the overproduction of the sesquiterpene (-)-α-bisabolol by constructing a biosynthesis route and enhancing the flux in the mevalonate pathway. The resulting strain produced 4.4 g/L (-)-α-bisabolol, the highest titer reported in yeast to date. Our study expands the toolbox of metabolic engineering and is expected to enable a highly efficient production of various terpenoids.

15.
Rapid Commun Mass Spectrom ; 34(7): e8656, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31721336

ABSTRACT

RATIONALE: Interactions of drug molecules and proteins play important roles in physiological and pathological processes in vivo. It is of significance to establish a reliable strategy for studying protein-drug ligand interactions and would be helpful for the design and screening of new drugs in pharmacological research. METHODS: The interactions between four indole alkaloids (IAs) extracted from Ophiorrhiza japonica (O. japonica) and myoglobin (Mb) protein were investigated using a multi-spectrometric and computational method of native electrospray ionization mass spectrometry (native ESI-MS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), circular dichroism (CD) and molecular docking (MD). RESULTS: The IA-bound Mb complexes were analyzed using native ESI-MS, with the obtained protein-to-ligand stoichiometry at 1:1, 1:2 and 1:3. Binding constants were measured according to the interpretation of MS spectra. MD complemented MS measurements, probing the binding sites and modes of the four IAs to Mb. Analyses involving CD and HDX-MS demonstrated that exposure to IAs could affect the conformation of Mb by decreasing the α-helix content and made Mb more susceptible to HDX at the backbone. CONCLUSIONS: A new MS-based integrated analysis method has been developed to successfully study the interactions of Mb and IAs extracted from O. japonica. The experimental and calculation results have good consistency, revealing all of the four IA molecules could bind to Mb to form 1:1, 1:2 and 1:3 Mb-IA complexes. The order of binding ability of these IAs to Mb was ophiorrhine B > compound C > ophiorrhine A > compound D. CD and HDX-MS results indicated that binding with IAs destabilizes Mb. HDX-MS analysis suggests that Mb becomes more susceptible to HDX, indicating that binding with IAs destabilizes the structure of Mb. In addition, the interaction with IAs affected the overall structure of Mb, ascribed to the decrease of α-helix content and less folding of the backbone.


Subject(s)
Indole Alkaloids/pharmacology , Myoglobin/metabolism , Plant Extracts/pharmacology , Rubiaceae/chemistry , Animals , Circular Dichroism , Horses , Indole Alkaloids/chemistry , Molecular Docking Simulation , Myoglobin/chemistry , Plant Extracts/chemistry , Protein Conformation, alpha-Helical/drug effects , Spectrometry, Mass, Electrospray Ionization
16.
J Cell Physiol ; 233(4): 2681-2692, 2018 04.
Article in English | MEDLINE | ID: mdl-28833090

ABSTRACT

CRSBP-1 (mammalian LYVE-1) is a membrane glycoprotein highly expressed in lymphatic endothelial cells (LECs). It has multiple ligands, including hyaluronic acid (HA) and growth factors/cytokines (e.g., PDGF-BB and VEGF-A) containing CRS motifs (clusters of basic amino-acid residues). The ligand binding activities are mediated by Link module and acidic-amino-acid-rich (AAAR) domains, respectively. These CRSBP-1/LYVE-1 ligands have been shown to induce opening of lymphatic intercellular junctions in LEC monolayers and in lymphatic vessels in wild-type mice. We hypothesize that CRSBP-1/LYVE-1 ligands, particularly CRS-containing growth factors/cytokines, are secreted by immune and cancer cells for lymphatic entry during adaptive immune responses and lymphatic metastasis. We have looked into the origin of the Link module and AAAR domain of LYVE-1 in evolution and its association with the development of lymph nodes and efficient adaptive immunity. Lymph nodes represent the only major recent innovation of the adaptive immune systems in evolution particularly to mammals and bird. Here we demonstrate that the development of the LYVE-1 gene with the AAAR domain in evolution is associated with acquisition of lymph nodes and adaptive immunity. LYVE-1 from other species, which have no lymph nodes, lack the AAAR domain and efficient adaptive immunity. Synthetic CRSBP-1 ligands PDGF and VEGF peptides, which contain the CRS motifs of PDGF-BB and VEGF-A, respectively, specifically bind to CRSBP-1 but do not interact with either PDGFßR or VEGFR2. These peptides function as adjuvants by enhancing adaptive immunity of pseudorabies virus (PRV) vaccine in pigs. These results support the notion that LYVE-1 is involved in adaptive immunity in mammals.


Subject(s)
Adaptive Immunity , Amino Acids, Acidic/metabolism , Evolution, Molecular , Lymph Nodes/immunology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Female , Ligands , Lymph Nodes/drug effects , Membrane Proteins/metabolism , Peptides/pharmacology , Phylogeny , Platelet-Derived Growth Factor/pharmacology , Protein Domains , Pseudorabies Vaccines/immunology , Sequence Alignment , Sharks , Structural Homology, Protein , Structure-Activity Relationship , Sus scrofa , Vascular Endothelial Growth Factor A/pharmacology , Zebrafish
17.
18.
PLoS One ; 12(5): e0177887, 2017.
Article in English | MEDLINE | ID: mdl-28531199

ABSTRACT

MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , Liver/growth & development , MicroRNAs/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Cell Line , Cell Proliferation , Gene Expression Regulation, Developmental , Hepatocytes/cytology , Organ Size , Signal Transduction , Zebrafish/genetics
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(12): 1609-1614, 2017 Dec 20.
Article in Chinese | MEDLINE | ID: mdl-29292253

ABSTRACT

OBJECTIVE: To construct a cell model of 4.1R gene knockout in murine macrophage cell line RAW264.7 using CRISPR/Cas9 technique. METHODS: Three high?grade small?guide RNAs (sgRNAs) that could specifically identify 4.1R gene were synthesized and inserted into lentiCRISPRv2 plasmid. RAW264.7 cells were infected with sgRNA?Cas9 lentivirus from 293T cells transfected with the recombinant sgRNA?lentiCRISPRv2 plasmid, and the positive cells were screened using puromycin and the monoclonal cells were obtained. The expression of 4.1R protein in the monoclonal cells was measured by Western blotting, and the mutation site was confirmed by sequence analysis. Result A 4.1R gene knockout RAW264.7 cell line was obtained, which showed a 19?bp deletion mutation in the 4.1R gene sequence and obviously enhanced proliferation. CONCLUSION: We successfully constructed a 4.1R gene knockout macrophage cell line using CRISPR/Cas9 technique, which may facilitate further investigation of the function of 4.1R in macrophages.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques , Microfilament Proteins/genetics , RNA, Guide, Kinetoplastida/genetics , Animals , Mice , RAW 264.7 Cells
20.
Appl Opt ; 55(24): 6630-3, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27556981

ABSTRACT

In this work, we propose a filter structure using a one-dimensional ferroelectric-dielectric periodic multilayer, air/[(ABA)Ns C]Np(ABA)Ns /air, where Ns and Np are the two numbers of periods. Here, B is a dielectric material of SiO2, C is the same as B with a different thickness, and A is taken to be a ferroelectric material Ba55Sr45TiO3+30%Mg2SiO4, whose dielectric constant is very high (ϵ=439 at 10 GHz). The results show that the transmittance spectra have Ns-channel groups at microwave frequencies and these groups can be classified into two types. The first type has only one channel group with Np narrower channels. The other has Ns-1 groups, each of which has Np+1 broader channels. In this filter structure the group number and channel number of each group can be determined simply by changing Ns and Np.

SELECTION OF CITATIONS
SEARCH DETAIL
...